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Abstract: Environmental niche modeling is an increasingly common tool in conservation and
management of non-timber species. In particular, models of species’ habitats have been aided by new
advances in remote sensing and it is now possible to relate forest structure variables to understory
species at a relatively high resolution over large spatial scales. Here, we model landscape responses for
a culturally-valued keystone shrub, velvet-leaf blueberry (Vaccinium myrtilloides Michaux), in northeast
Alberta, Canada, to better understand the environmental factors promoting or limiting its occurrence,
abundance, and fruit production, and to guide regional planning. Occurrence and abundance
were measured at 845 and 335 sites, respectively, with both strongly related to land cover type and
topo-edaphic factors. However, their influence varied widely, reflecting differences in the processes
affecting occurrence and abundance. We then used airborne laser scanning (ALS) to characterize
horizontal forest canopy cover for the study area, and related this and other geospatial variables to
patterns in fruit production where we demonstrated a five-fold increase in fruit production from
closed to open forest stands. We then simulated forest canopy thinning across the study area to
identify places where gains in fruit production would be greatest following natural disturbance or
directed management (e.g., thinning, prescribed burning). Finally, we suggest this approach could be
used to identify sites for habitat enhancements to offset direct (land use change) or indirect (access)
losses of resources in areas impacted with resource extraction activities, or simply to increase a
culturally-valued resource through management.

Keywords: velvet-leaf blueberry; Vaccinium myrtilloides; fruit production; boreal forest; LiDAR; ALS;
canopy; environmental niche models

1. Introduction

Species distribution and abundance models are vital to guiding management and conservation.
These niche models are reliant upon remote sensing and other geospatial products, which are constantly
being refined by advances in sensors and analytical approaches, for applications in land and wildlife
management [1–3]. For instance, forest management now includes and aims to model values beyond
timber resources [4], such as the management of understory species and communities. Remotely
sensed variables related to terrain morphology and vegetation structure provide key measures and
insights into these other management priorities, leading to more successful management strategies [2].
Modeling understory plant species remains a key challenge despite broad applications, ranging from:
mapping high-provisioning areas for ecosystem services [5]; identifying hot-spots of species richness
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and biodiversity monitoring [6–8]; managing vulnerable species, such as grizzly bear (Ursus arctos
L.) [9,10] and at-risk plants [11]; and mapping culturally valuable areas by combining Indigenous
knowledge with information on soils [12] and climate [13]. Of the suite of common understory species,
the availability of fruiting shrubs is vital to both wildlife and humans [14,15]. Hence, mapping their
distribution and abundance can therefore inform land use and forest management [16–18].

Broadly speaking, fruiting shrubs are defined as species that produce a hard or soft mast;
their fruits being a common component of wildlife diet, particularly for omnivorous mammals
and frugivorous birds, as well as sources of human sustenance [9,15]. Thus, their management
as non-timber forest products has become a research focus, with efforts to understand how forest
management practices affect their persistence and recovery post-disturbance [19–21]. For example,
retention forestry practices and prescribed burning were found to maximize species richness and
production by two important berry species in Scandinavia, wherein selective logging favored high
production of bilberry (Vaccinium myrtillus L.) [21]. Similarly, low intensity, shallow-depth fires were
shown to enhance blueberry (Vaccinium spp.) production in eastern Canada [22], which suggests that
prescribed burning may be an effective management tool to increase berry yields. Low intensity fires
remove less productive (older) stems, reduce competition, and diminish forest canopy development
(succession), leading to higher yields in fruit.

When resource extraction activities decrease the availability of fruiting shrubs, habitat
enhancements that offset these losses have been shown to be a viable mitigation strategy [23]. However,
habitat enhancement, or more generally management strategies that promote fruiting, such as prescribed
burning, should be guided by an understanding of where best to locate these efforts given the niche of
the target species [18,23]. Although one may simply use a species distribution model to guide such
actions, areas that are suitable for fruiting shrub occurrence and their relationships to environmental
variables may not correspond to those areas most suitable for fruit production, as occurrence and
productivity or abundance may be driven by differing processes [2,18]. Understanding these differences
is important for highlighting the most valued sites, especially when the species may be common (high
prevalence), but rarely reproduces sexually (i.e., produces fruit). Models and their subsequent map
predictions should therefore separate the processes of occurrence, abundance, and fruit production. This
is especially important when fruit production is limiting to vulnerable wildlife species, such as grizzly
bear [24], and given that access to areas of high-quality fruit is important to Indigenous Peoples [9,18,25].
In Alberta’s oil sands region, proximity to resource extraction may be limiting traditional use of fruiting
shrubs due to concerns regarding trace element contamination [26], accessibility, and diminished land
and resource health due to a loss of reciprocity between humans and non-human life [27], highlighting
the need to understand where productive fruit patches occur now, and where they may change
in the future given forest disturbance (both natural and anthropogenic) and succession that alter
these resources.

Remotely sensed metrics of forest attributes derived from airborne laser scanning (ALS) have
substantially enhanced our ability to map forest understories [28], but the development and application
of these data and products remain underutilized, particularly for the shrub layer and especially for
fruiting shrubs. In an example from southwest Alberta, Canada, researchers applied ALS data to
map the abundance and productivity of three fruiting shrubs, and found that that the inclusion of
ALS-derived variables improved explanatory power due to associations between shrub productivity
and canopy architecture, including forest height [16]. Likewise, remotely-sensed spectral data,
in addition to field-measured forest stand attributes, were shown to provide good predictive capacity
for mapping Alaska blueberry (Vaccinium alaskensis Howell) productivity and abundance over a small
area [18]. We suggest that the use of ALS-derived variables reflecting overstory canopy structure
may allow for such predictions to be made over larger spatial extents in areas where these data are
widely available. The resulting maps would be useful in guiding specific management, such as habitat
enhancements for fruiting shrubs where they are limiting to humans or wildlife due to land use changes,
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or, more simply, the desire to actively manage and improve shrub resources, as was historically the
case with the use of fire by indigenous peoples [29].

Here, we examined, across a large region of boreal forests in northeast Alberta, Canada, the factors
limiting or promoting the occurrence, abundance (measured as percent shrub cover), and fruit
production (measured as fruit density) of a common understory ericaceous shrub, velvet-leaf blueberry
(Vaccinium myrtilloides Michaux) (Figure 1). This species’ fruit is known for its high forage value for
both humans [15,30] and wildlife [31], and it is considered a cultural keystone species for its role as
food, medicine, and technology (e.g., dyes) for Indigenous Peoples, including Cree, Dené, and Métis
people in Fort McKay, Alberta [32,33]. Our goals here are first to predict and compare differences in
blueberry occurrence, abundance, and fruiting, and second to identify high priority areas for enhancing
blueberry fruiting.
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Figure 1. (a) Velvet-leaf blueberry (Vaccinium myrtilloides Michaux) with ripe fruit from northeast
Alberta, Canada; (b) example habitat where blueberry is abundant in the understory, here in a semi-open
dry aspen forest (note transect line). Photographs by S.E. Nielsen.

2. Materials and Methods

2.1. Study Species and Study Area

We assessed velvet-leaf blueberry (Figure 1, hereafter, ‘blueberry’) occurrence and abundance
over a large region of boreal forest in northeast Alberta, Canada. In Chipewyan, this species is known
as tsánlhchoth, and Cree names for this species include inimena, enimina, ı̄yinomin (“person berry”),
iynimin, ithı̄nı̄mina (“Indian berry”), and sı̄pı̄kōmin (from English as “blue berry”) [34]. This species
is widely distributed across the northern forests of North America [35]. In the United States this
species ranges from New England south through the Appalachian Mountains, to as far south as North
Carolina, where it is uncommon and at its lowest latitude. It is widespread throughout the Midwest
USA and is especially common in the upper Great Lakes. In the western USA, this species is less
common, and restricted to the mountains of northwest Montana and northcentral Washington adjacent
to the Canadian border. In Canada, this species of blueberry is distributed throughout most of the
forested regions of the country, being present in all provinces, as well as the Northwest Territories,
but it is particularly common in boreal forests, and especially in dry upland jack pine (Pinus banksiana
Lamb.) and open deciduous and mixed forests [36].
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The study took place in the Athabasca region of northeast Alberta, Canada, specifically the
region south of Lake Athabasca that borders the province of Saskatchewan on the east, and to the
south the southern periphery of the boreal forest that transitions from Crown land to private lands
and agriculture (Figure 2). This large area (81,156 km2) comprises a mosaic of boreal peatland and
upland forests, with distinct terrain features including the Birch and Stony Mountains [37]. Although
called mountains, these features are more correctly considered large plateaus with flat terrain on top
that are often dominated by peatlands and with relatively steep sides, especially their eastern flanks.
Elevation differences from the base to plateau are moderate at ~200 and ~400 m for the Stony and Birch
Mountains, respectively (Figure 2).
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Figure 2. Terrain, elevation, major water features, and towns within the study area (a); and location of
Alberta, Canada (outline) and study area (gray polygon) within North America (b).

The study region contains some of the world’s largest oil reserves: the Athabasca oil sands [37].
Extraction of this resource includes surface mines near Fort McKay where bitumen is near the surface,
and more extensive sub-surface mining using a network of small-footprint wells throughout the area,
but especially in a zone between Cold Lake in the south and Fort McKay in the north (Figure 2).
Many parts of the region are dominated by peatlands [38] wherein forestry is largely absent, but the
remaining upland forests are sustainably managed for fiber production (pulp/paper and lumber). Lastly,
wildfires are common to the study area, representing the primary natural disturbance, with average
fire rotations varying from 167 to 180 years in boreal forests [39], but more frequent in some parts of
the region, especially on the Athabasca Plain (Figure 2).
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2.2. Study Design and Field Measures for Mapping Blueberry Distribution (Occurrence)

Local occurrence of blueberry was quantified in the field at 845 quarter-hectare (50 × 50 m) plots
sampled in the summer months between the years 2012–15 via two sampling campaigns. The first
included 510 plots from a regional rare plant study that quantified presence/absence of all vascular
plant species within plots (2012–2014) [40]. The second included 335 plots sampled in 2014 and
2015 for the specific purpose of quantifying regional fruiting shrub habitat; these were coded as
presence/absence observations for the occurrence portion of this analysis (Appendix A, Figure A1).
The former protocol (occurrence plots) involved observers walking belt transects (~2–4 m strip widths)
within the 50 × 50 m plots to record all vascular plants [41], including blueberry, whereas the latter
(abundance plots) involved a central 50 m transect where shrub abundance and fruit density were
measured within sub-plots along the transect. Likewise, the protocol for measuring occurrence within
abundance plots included meander surveys within 25 m of each side of the central 50 m transect to
document presence/absence of blueberry if it was not detected within the sub-plots used for measuring
abundance (see Section 2.3 for details on measures of abundance).

For the 510 plots from the regional rare plant study, plot locations were stratified by model-based
estimates of the likelihood of encountering rare vascular plants using a land cover classification raster
from Ducks Unlimited (Enhanced Wetland Classification, DU-EWC), and terrain-derived variables
from a 50 m digital elevation model (DEM) derived from 1:50,000 Topographic Data of Canada (CanVec
series). In contrast, plots for the fruiting shrub project were only stratified by land cover (DU-EWC),
but also generally considered time since fire. In both cases, anthropogenic land cover classes were
not sampled, nor were aquatic cover types where blueberry cannot grow. Although both sampling
campaigns were geographically constrained by the logistics of field sampling (Appendix A, Figure A1),
plot locations were representative of major land cover types and regional differences in soils, moisture
gradients, and climate. In both cases plots were located in habitats that varied from graminoid rich fens
to xeric jack pine forests. For the purposes of modeling species–environment associations, this stratified
design ensured a more even sampling distribution in environmental space, rather than geographic
space, which is recommended for environmental niche models [42].

2.3. Study Design and Field Measures of Blueberry Shrub Abundance and Fruit Production

In contrast to data used in mapping blueberry distribution (occurrence), shrub abundance,
measured as percent shrub cover, and fruit production, measured as counts of fruit (density),
were obtained from the 335 abundance plots designed for this purpose (Appendix A, Figure A1a).
Specifically, shrub cover and fruit production were measured within a sub-sample of the 0.25 ha plot
by first running a 50 m transect on a south-north bearing and dividing that transect into five sequential
sub-plots that were 10 m long by 2 m wide (1 m on either side of transect tape). Blueberry shrub cover
was then visually estimated in each sub-plot based on ordinal percent cover categories defined as
0 = absent; 1 = <1%; 2 = 1–5%; 3 = 6–25%; 4 = 26–50%; 5 = 51–75%; 6 = 76–95%; and 7 = 96–100%.
We used the mid-point value for each sub-plot (assuming 0.1% cover for the “1” cover class), and
averaged all sub-plots to obtain a single plot-wide (0.01 ha) measure of cover. Likewise, fruit abundance
was measured in the same sub-plots along the same transect, once berries had developed, again
using ordinal categories defined here as 0 = none; 1 = <1/m2; 2 = 1–5/m2; 3 = 6–25/m2; 4 = 26–50/m2;
5 = 51–100/m2; 6 = >100/m2. Mid-points of fruit for each sub-plot (assuming 0.1 fruit/1 m2 for “1” and
100 fruit/m2 for the “6”) were then reported for each plot on an average fruit per m2 basis. If fruit
abundance was too high to accurately estimate within the larger sub-plots, we used 1 m2 circular
quadrats centered within each sub-plot and averaged over the plot.

2.4. Statistical Modeling of Blueberry Occurrence, Abundance, and Fruit Production

We used a conditional or nested approach to modeling occurrence, abundance, and fruit
production [16,43]. First, we assessed the occurrence of blueberry shrubs within field plots using
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logistic regression [44], as is typical for species distribution modeling. This involved the use all 845
quarter-hectare plots from the study area (Appendix A, Figure A1b). Second, we assessed blueberry
shrub abundance and fruit production using the 335 sites where cover was measured, but conditional
to only those plots where blueberry shrubs were present (n = 186). Although techniques can be
used to model occupancy (0 s) and counts (>0) in a single model for situations with excessive zeros
(e.g., zero-inflated count models), we find it more efficient to develop individual models for each
response, particularly when there are large numbers of explanatory variables that would make model
selection difficult. Moreover, factors influencing these processes are expected to differ based on theory
and practice [45]. Abundance was represented by mid-point averages of cover scaled to a particular plot
size that resulted in continuous cover values, but was bounded between 0% and 100%. Our approach
to addressing this was to use fractional logistic regression [46], where cover values were converted
to proportions as scaled from the lowest to highest value, and then modeled using a generalized
linear model (GLM) with a binomial family, logit link, and the ‘robust’ option [47]. This ensured
that predictions for all places in the landscape were not lower or higher than the range of observed
values, which is a common problem related to other approaches. Finally, we modeled fruit production,
once again using the fractional logistic regression approach, where fruit counts where scaled from 0 to
1 and the same GLM model used as for cover, but here considering only those plots that were at a
phenological stage that allowed for fruit counts (n = 90). Model predictions from abundance and fruit
production models were then both back-transformed.

We then individually related occurrence, abundance, and fruit production to a suite of
environmental, remote sensing, and stand variables (i.e., geospatial data) using each of the
model structures. These variables included remotely sensed land cover types from the DU-EWC
(15 classes used here), general soil characteristics from the Soil Landscape of Canada version 3.2 [48],
terrain-derived variables from a 50 m DEM, and climate variables (Appendix A, Table A1). Climate
variables were provided at a resolution of 300 m and rescaled to 50 m using bilinear interpolation.
The original DU-EWC had a resolution of 30 m and was rescaled to 50 m using a majority filter,
with binary variables created for each land cover class. Soil variables were in polygon format and
converted to a 50 m raster. Finally, ALS cloud metrics were processed at a 50 m resolution. Soil variables
included soil pH, % sand texture, % clay texture, and soil depth (cm to bedrock). Terrain-derived
variables included: a compound topographic index (CTI) representing terrain wetness [49,50]; heatload
as it relates to potential solar radiation, weighted to southwest slopes to emphasize afternoon
heating [51]; and percent slope (Appendix A, Table A1). Climate variables included mean annual
temperature (MAT), mean annual precipitation (MAP), and frost-free period (FFP), all of which were
obtained from the ClimateAB model [52].

In addition to the land cover and environmental variables used for all models, the fruit production
model included two additional variables: (1) shrub abundance (scaled from 0 to 1), since fruit
production should scale with shrub abundance at suitable fruiting sites; and (2) forest canopy cover
(percent) derived from ALS data. The ALS data were collected using acquisition standards developed
by the Government of Alberta (GOA) [53]. The GOA has been purchasing licensed ALS data on an
annual basis since circa 2008. The provincial-scale ALS program has resulted in a dataset with a range
of dates, sensor types, and other acquisition parameters, but the adherence to the standard [53] results
in a fairly consistent dataset that has been previously used successfully for vegetation analyses [6,40].
The acquisition dates in the study area range from 2007 to 2013, with typical point densities of
1–4 returns/m2. The majority of the ALS data were collected within a few years of when field data
were collected. Horizontal cover was defined as the percentage of ALS returns >1.37 m within
50 m pixels, and were processed using FUSION software [54]. Forest canopy cover was square-root
transformed since preliminary analyses demonstrated skewed responses and poor fit to untransformed
data. An interaction between overstory canopy and shrub cover was tested to examine whether the two
factors were additive or multiplicative, since we expected greater shrub cover within open canopy sites
could substantially boost fruit production. We also considered the use of a binary ‘dummy’ variable for
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sampling year (2014 vs. 2015) to account for potential inter-annual variation in fruit production, but no
significant difference in fruit counts between years was found; thus, year was not further considered.
All statistical modeling was performed in STATA 14 [55].

Model building followed a modified version of the purposeful model building approach [56],
whereby variables hypothesized as important were added in a specific sequence and assessed for
significance until a final model structure with significant factors (p < 0.1) following the threshold
suggested by Hosmer & Lemeshow [57]). Specifically, our approach to model building used local
factors first, and then sequentially added variables at larger scales in the order of: (1) land cover,
(2) soils, (3) terrain, and (4) climate, except for fruit abundance where we did not consider land cover or
climate given the smaller sample size (n = 90), but instead added shrub abundance and forest canopy
cover. Variables were added only if uncorrelated (r < |0.7|) and retained only if significant (p < 0.1),
excluding land cover variables where we included non-significant cover types along with significant
cover types. In some cases, land cover types of similar nature were combined if their responses were
comparable or lacking enough field observations in abundance models. Land cover variables used
deciduous forest as the reference category, and thus land cover coefficients measure how it differs
from deciduous forests. Finally, non-linear effects of climate, soil, and terrain wetness were tested,
but only retained in models if significant (Appendix A, Table A1). Model predictive accuracy for the
occurrence model was assessed using cross-validation methods via a five-fold randomized assignment
of data, wherein 20% of data were iteratively withheld for validation (testing data) and the remaining
80% used for model training. We report the area-under the curve receiver operating characteristic
(AUC-ROC) [58] for our full model using all observations, as well as the range of AUC values for the
five validation models, whereby any ROC value >0.70 was considered to have good model predictive
accuracy [59]. Finally, null models were used to further test whether predicted occurrence differed
from what would be expected based on chance [60]. This was done by developing 199 null models that
each randomly sampled 845 locations within the study area. Of these, 516 locations were randomly
coded as present and the remaining 329 coded as absent to match the prevalence of real data, with a
minimum distance between observations of 150 m. ROC values were determined for each null model
and compared to the single observed ROC value of the predictive model using a one-sample t-test
where rejection of the statistic (one-sided analysis where ROC of the real model > ROC of null models)
would indicate our model was significantly better than random chance alone.

2.5. Landscape Predictions of Blueberry Occurrence, Abundance, and Fruit Production

Predictions of species’ occurrence, abundance, and fruit production were mapped using
model coefficients and environmental geospatial variables in ESRI ArcGIS version 10.6.1 at a 50 m
resolution. Anthropogenic and aquatic land cover types were masked as the species being absent (0).
A presence-absence map was then defined by thresholding the probability of occurrence model using a
probability cut-off value based on where model sensitivity and specificity values were maximized [58].
The presence-absence map was then used as a mask to constrain predictions of shrub abundance
and fruit production, since these responses are conditional to where blueberry was first predicted
to be present. Because shrub abundance was used to estimate fruit production, spatial predictions
of fruit production used predicted shrub abundance as an input. ALS data on forest canopy cover
were available for 83.5% of the study area, and we therefore limited predictions of fruit production to
those areas.

2.6. Habitat Enhancements: Effects of Simulated Forest Canopy Removal on Fruit Production

After estimating current fruit production, we examined the potential benefit of removing forest
canopy to enhance fruit production in blueberry by simulating reductions in canopy across the region
for where ALS data were available (83.5% of the area). Specifically, we quantified the expected gain in
fruit production by predicting fruit production under simulated reductions in canopy (to 0%). We then
compared the simulated fruit production to their current values through subtraction to estimate the
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potential gain (change) in fruit supply since fruit production is inversely related to forest canopy
cover [18,31,61]. Thus, maps of this change reflect where: (1) blueberry is likely to occur and be
abundant (cover), given the environmental constraints that relate to occupancy-abundance; (2) where
environmental conditions are suitable for fruit production, but production is limited by forest canopy
cover; and (3) where changes in forest canopy cover result in the largest increases in fruit production.
Such sites would benefit from overstory disturbances from wildfires, prescribed fires, tree thinning
(natural or human-induced), or even forest harvesting if using understory protection. Ultimately
defining the most suitable sites for management and habitat enhancements, including habitat offsets
that address direct (removal) or indirect (access) losses of the resource.

3. Results

3.1. Landscape Patterns in Blueberry Occurrence

Blueberry shrubs were detected at 516 of the 845 quarter-hectare plots sampled for an overall
prevalence of 61.1%. The presence of blueberry shrubs was significantly related to 23 variables.
Land cover types represented 16 of those variables, with blueberry occurrence being higher in pine
forests, conifer swamps, and conifer forests, and lower in fens, bogs, and shrub-swamps when compared
to the deciduous forest reference category (Table A2). Edaphically, occurrence was related non-linearly
to soil pH, positively related to the amount of clay and sand in soils (and thus negatively related to
percent silt), and more likely in sites with shallow soil depths. Topographically, shrub occurrence was
negatively related to percent slope and terrain wetness, pointing to greater likelihood in flat, dry sites.
Climate variables were not significantly related to blueberry occurrence. Model predictive accuracy
was good at a ROC AUC of 0.78 using all observations (within-model validation), and ranged from
0.77 to 0.80 (mean 0.78) for the five cross-validation models (out-of-model validation). Null model
ROC AUC averaged 0.59 (S.D. = 0.02) ranging from a low of 0.55 to a high of 0.63 and was significantly
different than the true predictive model (t = −0.018, df = 198, p < 0.001). Optimal cut-off probability for
the classification of presence–absence was set at 0.64. Spatially, blueberry presence was predicted to
be common throughout the region at an overall prevalence of 48.1% (53.5% when removing water,
agriculture, and other masked non-habitat), but noticeably absent in areas of mature deciduous forests
in the south near Lac la Biche (Figure 3a,b).

3.2. Landscape Patterns in Blueberry Shrub Abundance

An abundance of blueberry shrubs, where present, was significantly related to 23 variables
(15 being land cover, but grouped into only seven classes) with abundance highest in recently
(~10-years) burned sites and treed-rich fens, and lowest in conifer forests, treed-poor fens, bogs,
and swamps (Table A2). There were notable differences between land cover relationships for blueberry
shrub cover to that of occurrence. For example, pine forests have very high rates of blueberry
shrub occurrence (highest prevalence among all land cover types), but shrub abundance was not
significantly related to pine forests, which was weakly negative in its effect (relative to deciduous
stands). Edaphically, shrub abundance was related non-linearly to the amount of clay in soils and soil
depth, with both peaking at low or moderately-high values. Topographically, shrub abundance was
inversely related to heatload, and thus abundance increased along northeast-facing slopes. Climatically,
shrub abundance was inversely related to mean annual temperature (cooler areas) and non-linearly
related to precipitation with areas of increased precipitation generally increasing shrub abundance,
but this relationship diminished in the areas of highest precipitation. Spatially, blueberry shrub
abundance was predicted to be highest (maximum cover in field plots and maps was 81%) in the region
northeast of Fort McMurray, along the Saskatchewan border and the west side of Stony Mountain
(Figures 1 and 3c). These areas both experienced large wildfires in the prior decade (see Appendix A,
Figure A1). Although blueberry shrubs are among the most common plant species in the boreal forest
with prevalence in field plots and landscape predictions >50% for terrestrial habitats, areas of abundant
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blueberry cover are less common. For example, 11% of occupied sites were predicted to exceed 25%
blueberry shrub cover, and only 4% exceeded 50% cover.
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Figure 3. Predicted probability of occurrence (a), presence (b), and abundance (c) of velvet-leaf
blueberry (Vaccinium myrtilloides Michaux) in northeast Alberta, Canada. White areas represent lakes,
and grey areas lack native vegetation (agriculture, etc.) in (a) or areas predicted to have no blueberry
shrubs (b,c). A digital elevation model-derived hillshade model is used as a base layer in maps to
emphasize the underlying terrain.

3.3. Landscape Patterns in Blueberry Fruit Production

Blueberry fruit production was significantly related to four variables. Not surprisingly, it was
positively related to blueberry shrub abundance and inversely related to forest canopy cover (Table 1).
Maximum observed fruit production in the field was 53.2 fruit/m2, but highly productive patches
were uncommon. Edaphic and terrain factors significantly affected fruit production being inversely
related to amount of clay and positively related to southwest slopes as measured by the heatload index.
Although one might expect an interactive effect between shrub abundance and forest canopy cover on
fruit production, this was not supported (non-significant), pointing to additive, yet non-linear effects
due to the square-root transformation of forest canopy cover (Figure 4). When examining predicted
responses in fruit to forest canopy and shrub cover, an increase in forest canopy cover from 0% to 100%
was predicted to decrease fruit production nearly five-fold, while an increase in shrub cover increased
fruit production 3–4-fold (Figure 4).

Table 1. Model results predicting blueberry fruit production (scaled from 0 to 1) from 90 plots in
northeast Alberta, Canada using fractional logistic regression. Model coefficients (β), standard errors
(SE), and significance (p) are reported.

Variable β SE p

Shrub abundance to 1 3.721 0.768 0.001
Canopy, (

√
percent) −0.230 0.079 0.004

Clay, percent −0.069 0.019 0.001
Heatload, index 0.010 0.003 0.001

Constant −21.079 5.543 0.001
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Figure 4. Predicted average fruit production (berries/m2) of velvet-leaf blueberry as a function of forest
canopy cover measured from Airborne Laser Scanning (ALS) data (fraction of first returns at >1.37 m
height) and blueberry shrub cover. All other variables were held at their mean.

Figure 4 illustrates the full range of values for both shrub and forest canopy cover and their
influence on fruit production holding all other factors at their mean value. The highest possible fruit
production was between 40–50 fruit/m2 at sites with maximum shrub cover (81%) and open canopies.
Spatially, fruit production was closely related to patterns in shrub cover and thus highest in the areas of
predicted high shrub cover, but with significant local modifications due to soils (clay texture), terrain
(heatload), and especially local patterns in forest canopy cover measured by ALS (Figure 5). Like that
of blueberry shrub cover, sites where fruit are abundant are uncommon despite the species itself being
common. For example, 28% of occupied sites were predicted to have fruit production exceeding
10 fruit/m2, while only 11% of occupied sites exceeded 25 fruit/m2.

3.4. Identifying Priority Sites for Habitat Enhancements

Maps predicting gains in blueberry fruit production with simulated forest canopy thinning
(Figure 6) provide a framework for identifying sites for habitat enhancements or simply locations
where fruit production should increase most following natural forest disturbances. Overall, some of
the greatest gains were predicted to occur over much of the north and east parts of the study area,
especially east of the Athabasca River. However, even moderately-high gains were predicted for
much of the region where blueberry shrubs are present, suggesting strong ‘top-down’ limitations from
overstory canopy and opportunities for improving fruit production with canopy disturbance/thinning.
For instance, 42% of current blueberry habitat has the potential to increase their fruit production by
10 fruit/m2 with canopy disturbance to open conditions (0% forest canopy cover), and 14% of this
area would exceed 20 fruit/m2. When examining gains in fruit by broad land cover types, the order of
greatest to lowest potential gains were in pine forests, deciduous forests, and bogs and fens.
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Figure 5. Velvet-leaf blueberry fruit production based on airborne LiDAR forest canopy cover (fraction
of first returns >1.37 m height) (a) and predicted fruit production (fruit/m2) for northeast Alberta,
Canada (b). Note that parts of the study area (Cold Lake Air Weapons Range in the southeast;
private lands in the south-southwest) did not have LiDAR coverage and thus predictions restricted.
A DEM-derived hillshade model is used as a base layer in maps to emphasize the underlying terrain.
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Figure 6. Predictions of where fruit production would be enhanced most under a scenario of complete
forest canopy disturbance (natural, e.g., fires; or management, e.g., tree thinning/removal) (a). Estimates
(fruit/m2) were obtained from differences in fruit production predicted under current forest canopy
cover (airborne laser scanning returns >1.37 m height) from those expected with canopy disturbance.
Sub-panels (b) and (c) provide more detailed illustrations of local responses. A digital elevation
model-derived hillshade is used as a base layer in maps to emphasize the underlying terrain.
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4. Discussion

Although blueberry is a common boreal species, our results illustrate that areas of abundant
shrub cover and high fruit production are much less common and thus of high value. Blueberry
shrub occurrence was strongly associated with land cover, specifically jack pine and spruce (Picea spp.)
dominated forests, shallow sandy and surprisingly clayey soils, and dry, flat areas. The lack of
significant relationships with climactic variables confirms the wide climactic tolerance of this species,
consistent with the widespread distribution of the species in Canada and the northern USA. By contrast,
abundance was highest in recently burned sites and treed fens, on soils with low to moderate amounts
of clay, and shallow to moderate soil depths, in cooler areas and cooler slopes, and areas of moderate to
high precipitation. This is a product of differing processes driving occupancy and abundance. Previous
work has suggested that local abundance will be related to life history traits, especially clonality,
whereas occupancy (range size) is limited by habitat availability [62]. We note that blueberry is capable
of extensive clonal reproduction and thus can be long-lived [63], as are many boreal species [64], and our
results likely reflect environmental factors driving patterns in vegetative reproduction. Although
blueberry can persist under closed-canopies due to plasticity in morphology and biomass allocation,
these conditions do not promote sexual reproduction [61], which is ultimately the value of most interest
to humans and wildlife.

Assessing fruit production reflects a more targeted management need than does assessing broader
patterns in occurrence and abundance. We found that areas of high fruit production were associated
with areas of high abundance and were inversely related to forest canopy cover, as measured by
ALS data. Although these general relationships are not surprising, little work has been done to
quantify their effect sizes and resulting landscape patterns. We did not include land cover and climate
variables in fruit production models, but instead found, in contrast to occupancy, that production was
negatively associated with clayey soils (i.e., positively correlated with silts and sands), and positively
related to ‘warmer’ southwest slopes. In particular, it is evident that even when shrub cover is high,
fruit production will be low to moderate without the presence of open forest canopies, illustrating the
restrictive additive conditions needed for promoting abundant fruit and highlighting the applicability
of using ALS canopy structure measures in modeling fruit production. We did not, however,
test other remotely-sensed forest canopy measures, and thus comparisons with ALS are needed to
more comprehensively assess its value. These findings also support previous work documenting the
general relationship between light availability and fruit production for blueberry and other species of
Vaccinium [16,18,61]. For example, Moola [61] documented a nearly 95% increase in blueberry fruit
production in a shelterwood cut (partial shade) vs. an overgrown, shaded clearcut (heavy shade).
An example from Alaska, United States, demonstrated similar findings at a smaller spatial scale;
blueberry shrub abundance was positively related to denser forests (i.e., higher tree densities and basal
area), but productivity was negatively related to these sites [18]. Therefore, the authors suggested
thinning treatments as a management strategy to increase blueberry yield for Indigenous community
harvesting [18].

Habitat enhancements, such as thinning treatments and prescribed burning, can be applied to
multiple management goals, for example mitigative offsets to compensate for loss [23], or as resource
enhancements for commercial or other purposes [21]. Thinning and forest harvest have been shown
to relate to increased blueberry productivity [61,65], as has prescribed burning under open-canopy
conditions, for both blueberry and related species [22,66]. Here, we mapped areas that would be
most suitable for targeted management of blueberry production through forest canopy opening or
would likely relate to increased berry crops following natural disturbance such as wildfire. Specific
areas that could be managed to promote major gains in fruit production included those south and
east of McClelland Lake, north of Fort McKay at the southern edge of the Athabasca Sand Plain,
the eastern slopes of Stony Mountain, and south and east of Anzac, Alberta. Aside from these
specific places, nearly all habitats in the region predict gains in blueberry fruit with canopy thinning,
suggesting important ‘top down’ limitations in the overstory, as 42% of the area of blueberry increased
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by 10 fruit/m2. This suggests that although some places will benefit more from canopy removal,
many places will respond favorably. The next step in assessing the feasibility and efficacy of the habitat
enhancements we suggest would be to compare thinning, both with and without understory protection
and via girdling or mechanical removal, as well as prescribed burning treatments.

Access to land in the boreal forest is limited by leases granted to the oil and gas industry. Although
these areas remain owned by the Crown, fencing, safety, and access requirements, including expensive
training, aesthetics, and the perceived or realized potential for contamination in proximity to resource
extraction, effectively limits these areas for public use. Offsets via habitat enhancements could be
particularly relevant here since human access to some of these high-quality berry patches will be limited,
as was suggested for Alaska blueberry in a similar study promoting Indigenous access to cultural
resources [18]. However, we note that berry harvesting patches cannot be regarded as interchangeable
given that such places are often tied to ancestral, cultural, and spiritual values [67]. Maps that
document important cultural resources, such as berries and medicinal plants, especially those that
identify areas for potential enhancements or provide a visual of how reduced access relates to resource
losses, can contribute toward food and health sovereignty among Indigenous communities [12,13].
A key next step in developing maps that are useful in representing Indigenous values is to create
and include parameters that are meaningful to communities, as demonstrated by Baumflek et al. [12],
who included accessibility and travel distance variables determined by community members.

5. Conclusions

Species niche models have wide-ranging applications in ecology, management, and conservation.
They broaden our understanding of environmental factors limiting species and processes regulating
occurrence and abundance, and can be used to guide management and conservation. Here, we used a
fractional logistic regression approach to model velvet-leaf blueberry occurrence, abundance, and fruit
production in northeast Alberta, Canada, at high spatial resolution using a suite of remote sensing and
other geospatial data. Our study included ALS forest canopy structure data, the application of which
we strongly encourage in future studies of understory species, especially fruiting shrubs. Broadly,
we observed differences in the environmental factors related to blueberry occurrence, abundance,
and productivity that reflect processes such as vegetative reproduction and relationships between light
and fruiting. Moreover, our approach of assessing these three ‘dimensions’ of a single species relates to
differential management goals over broad scales, and provides a more complete assessment of how
this important species relates to measureable environmental factors such as topo-edaphic factors and
forest canopy closure. Mapped predictions of blueberry fruit production for the region identified
places of current cultural and wildlife value, but also places where productivity gains in fruit would be
highest with forest canopy reduction or removal. These places represent areas to target management
to enhance accessible blueberry fruit resources, potentially in response to a loss of high-value patches
elsewhere. Identifying which of these areas have existing value to Indigenous communities would
be highly valuable and could be achieved through community partnership. Maps like what we have
shown here may also find application in identifying areas made inaccessible by resource extraction,
or those with lost or diminished capacity for harvesting [27] where patches are irreplaceable. Overall,
this work provides a suite of tools and a methodological framework for modeling and managing
wildlife values and a cultural keystone species.
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Appendix A

Tables A1 and A2 contain additional supporting information on model results describing blueberry
occurrence, abundance, and fruit production.

Table A1. List of environmental variables used for modeling blueberry shrub distribution, abundance,
and fruit production. Note that the forest canopy cover variable was only used for modeling fruit
production and that some variables were tested for non-linear responses using quadratic models as
indicated by *. DU-Enhanced Wetland Classification of land cover types were provided at a resolution
of 30 m and rescaled to 50 m using a majority filter. Soil Landscapes of Canada was polygon-based
and thus converted to a raster at a 50 m resolution. Terrain variables were derived from a 50 m DEM,
while ClimateAB variables were re-scaled to 50 m from a 300 m model using bilinear interpolation.
Airborne Laser Scanning data were processed for this study at a 50 m resolution.

Variable Description Data Source

Land cover (used as binary categories)
Marsh Land cover of marsh DU-Enhanced Wetland Classification

Fen-G-R Land cover of fen-graminoid-rich DU-Enhanced Wetland Classification
Fen-G-P Land cover of fen-graminoid-poor DU-Enhanced Wetland Classification
Fen-S-R Land cover of fen-shrub-rich DU-Enhanced Wetland Classification
Fen-S-P Land cover of fen-shrub-poor DU-Enhanced Wetland Classification
Fen-T-P Land cover of fen-treed-poor DU-Enhanced Wetland Classification

Bog Land cover of bog DU-Enhanced Wetland Classification
Bog-treed Land cover of bog-treed DU-Enhanced Wetland Classification
Swamp-S Land cover of swamp-shrub DU-Enhanced Wetland Classification
Swamp-D Land cover of swamp-deciduous DU-Enhanced Wetland Classification
Swamp-T Land cover of swamp-tamarack DU-Enhanced Wetland Classification
Swamp-C Land cover of swamp-conifer DU-Enhanced Wetland Classification

Decid Land cover of upland-deciduous DU-Enhanced Wetland Classification

Conifer Land cover of upland-conifer, not
pine DU-Enhanced Wetland Classification

Pine Land cover of upland-pine DU-Enhanced Wetland Classification
Burn Land cover of recently burned DU-Enhanced Wetland Classification

Soils
pH * Soil pH Soil Landscapes of Canada v3.2

Clay * Soil texture, percent clay Soil Landscapes of Canada v3.2
Sand * Soil texture, percent sand Soil Landscapes of Canada v3.2

Depth * Soil depth (cm) Soil Landscapes of Canada v3.2

Terrain
Slope Percent slope DEM, derived product (this study)

Wetness * Terrain wetness (CTI method) DEM, derived product (this study)
Heatload Heatload index DEM, derived product (this study)

Climate
MAT * Mean annual temperature (◦C) ClimateAB
MAP * Mean annual precipitation (mm) ClimateAB

FFP Frost free period (days) ClimateAB

Forest canopy cover
Canopy Percent forest canopy cover Airborne Laser Scanning (this study)
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Table A2. Model results describing blueberry shrub occurrence using logistic regression and
shrub abundance using fractional logistic regression. Model coefficients (β), standard errors (SE),
and significance (p) reported for each model. Significant variables (p < 0.1) have parameters in bold
font. Note the same values for some fens and bog/swamps in abundance models as those land cover
categories were combined and fit as single variables.

Occurrence Abundance

Variable β SE p β SE p

Land cover
Marsh −0.412 0.751 0.583

Fen-G-R −1.682 0.569 0.003 0.197 0.958 0.837
Fen-G-P −1.930 0.827 0.020 0.197 0.958 0.837
Fen-S-R −0.621 0.395 0.116 0.197 0.958 0.837
Fen-S-P −2.959 0.779 0.001 0.197 0.958 0.837
Fen-T-R −0.079 0.344 0.818 0.627 0.320 0.050
Fen-T-P −0.497 0.311 0.110 −1.222 0.707 0.084

Bog −0.927 0.939 0.323 −0.824 0.367 0.025
Bog-T −0.883 0.457 0.053 −0.824 0.367 0.025

Swamp-S −1.040 0.611 0.089 −0.824 0.367 0.025
Swamp-D −1.497 0.934 0.109 −0.824 0.367 0.025
Swamp-T 14.48 682.1 0.983 −0.824 0.367 0.025
Swamp-C 0.858 0.467 0.066 −0.824 0.367 0.025

Conifer 0.674 0.267 0.012 −1.329 0.298 0.001
Pine 0.866 0.273 0.002 −0.344 0.272 0.205
Burn 1.581 1.071 0.140 1.962 0.655 0.003

Soil
pH −4.830 2.025 0.017
pH2 0.460 0.207 0.027
Clay 0.019 0.008 0.023 −0.194 0.054 0.001
Clay2 0.003 0.001 0.001
Sand 0.019 0.004 0.001

Depth −0.011 0.004 0.002 −0.076 0.020 0.001
Depth2 0.0014 0.0003 0.001

Terrain
Wetness −0.198 0.054 0.001

Slope −0.389 0.085 0.001
Heatload −0.005 0.002 0.014

Climate
MAT −2.296 0.706 0.001
MAP 0.176 0.101 0.083
MAP2 −0.0002 0.0001 0.087

Constant 14.657 4.553 0.001 −38.765 25.120 0.123
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Figure A1. (a) Distribution of study plots by type of data collected with ‘occurrence’ plots (n = 510)
only assessing presence−absence, while abundance plots (n = 335) assessed presence−absence, shrub
abundance where present, and for a subset of plots (n = 90) fruit production for velvet−leaf blueberry
in northeast Alberta, Canada; and (b) the distribution (presence−absence) of velvet−leaf blueberry.
Broad land cover types are provided in both maps based on the Ducks Unlimited Enhanced Wetland
Classification. A DEM−derived hillshade model is used as a base layer in maps to emphasize the
underlying terrain.
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